Extensions of the Multiplicative Penalty Function Method for Linear Programming

نویسنده

  • Hiroshi Imai
چکیده

We shall extend Iri's multiplicative penalty function method for linear programming [41 so that it can handle the problem of unknown optimum value of the objective function, without solving both primal and dual problems simultaneously, and generate convergent dual solutions. By making use of these dual variables, lower bounds of the optimum objective function value are updated efficiently, which makes the total number of iterations required in the extended algorithm small. In doing so, a new duality on the mUltiplicative penalty function is dis· cussed. A sufficient condition for a constraint to be inactive at all optimum solutions is given, which can be checked in the extended algorithm. Several computational techniques for enhancing the efficiency of the algorithm are also discussed. Some connection of the proposed algorithm with Sonnevend's and Renegar's methods [10, III is touched upon. Furthermore a method of estimating the optimum objective function value is given. Preliminary computa. tional results on the random linear programming problem are finally shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE

In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...

متن کامل

Integrating Goal Programming, Taylor Series, Kuhn-Tucker Conditions, and Penalty Function Approaches to Solve Linear Fractional Bi-level Programming Problems

In this paper, we integrate goal programming (GP), Taylor Series, Kuhn-Tucker conditions and Penalty Function approaches to solve linear fractional bi-level programming (LFBLP)problems. As we know, the Taylor Series is having the property of transforming fractional functions to a polynomial. In the present article by Taylor Series we obtain polynomial objective functions which are equivalent...

متن کامل

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

Effects of Probability Function on the Performance of Stochastic Programming

Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...

متن کامل

A Quadratic Programming Method for Ranking Alternatives Based on Multiplicative and Fuzzy Preference Relations

This paper proposes a quadratic programming method (QPM) for ranking alternatives based on multiplicative preference relations (MPRs) and fuzzy preference relations (FPRs). The proposed QPM can be used for deriving a ranking from either a MPR or a FPR, or a group of MPRs, or a group of FPRs, or their mixtures. The proposed approach is tested and examined with two numerical examples, and compara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009